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Numerical study of domain coarsening in anisotropic stripe patterns
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We study the coarsening of two-dimensional smectic polycrystals characterized by grains of oblique stripes
with only two possible orientations. For this purpose, an anisotropic Swift-Hohenberg equation is solved. For
quenches close enough to the onset of stripe formation, the average domain size increases with'fme as
Further from onset, anisotropic pinning forces similar to Peierls stresses in solid crystals slow down defects,
and growth becomes anisotropic. In a wide range of quench depths, dislocation arrays remain mobile and
dislocation density roughly decays &3/3, while chevron boundaries are totally pinned. We discuss some
agreements and disagreements found with recent experimental results on the coarsening of anisotropic elec-
troconvection patterns.
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[. INTRODUCTION through curved stripes, it was recently proposed that a single
_ ) _ growth exponent could be introduced, but for vanishingly
Coarsening occurs when a system is rapidly quenched b&mall quenches onlji1,12. From dimensional arguments, a
low a transition point into a phase with broken symmetriesR~t3 growth law was derived in that regime, in good
The spatiotemporal evolution following a quench is rela-agreement with numerical results at small quenghés13.
tively well known when the broken symmetry phase is char-The freezing observed at finite quenches was attributed to the
acterized by a local order parameter that is spatially unifornpresence of a periodic pinning potenti@enerated by the
(e.g., the local magnetization of a ferromagnetic pHagg). pattern itself acting on grain boundaries.
The growth of spatial correlations, driven by domain growth  In the present paper, we consider a closely related prob-
or the annihilation of topological defects, usually obeys alem where similar questions remain open, and that has not
dynamical scaling relation and the correlation length, or “do-been investigated numerically so far: the coarseningrof
main size”R, grows as a power law of time with a well isotropicstripe patterns. Oblique rolls making only two pos-
defined exponent. Classification schemes have been estafible anglegé or -0, fixed) with respect to a particular axis
lished for the main different cas¢®,3]. can be observed in electroconvection of nematic liquid crys-
The situation is much less understood for phases charad@!S [4]- Studying the ordering dynamics on this system is
terized by a local order parameter that is spatially modulatednotivated by various reasons. First, one can intend a com-
Systems forming periodic patter(stripes, hexagonsvith a parison with available experimental data, since coarsening

well defined periodicity can be observed in numerous physi_experiments have been recently conducted in electroconvec-

cal systems, such as Rayleigh-Bénard convection, dibloc tion [14,15. Second, the polycrystalline structures of oblique

copolymer melts, magnetic materials, or Turing reaction—smpes have a relatively s!mpler geometry than those of iso-

LA ' ’ . tropic stripes: the constraint of the fixed angle prevents the
diffusion systems4]. After a quench into a stripe phase, ¢, mation of disclinations. Therefore, the topological defects
Mq-d|m¢n5|onal cqnflgurafuons are composed of'many doélre essentially dislocations aridhevror) grain boundaries
mains differently oriented, including grain boundaries, dislo-go 4 ating domains differently oriented. This situation can be
cations, and disclinations. Numericdl-13 as well as ex-

. ; . 2" seen as a smectic analog of the structures formed by grains in
perimental [14-17 studies have established that it is g ya

o, ; i . ) 2 polycrystalline solids, where disclinations are also absent
difficult, if not impossible, to reduce the ordering dynamlcspl yery

of stripes to one of the class known for uniform phases.
There is still some debate regarding the growth mechanismg,

the value of the growth exponent, whether dynamical Sca“n%ions This model, proposed by Pesch and Kramer for de-
holds or not, or whether the system may involve variousyejping electroconvectiofL], is recalled in Sec. II. In Sec.

characteristiq Iengt_h scales growing with diffgrent exponentsy , we investigate small quenches: the numerical results
In cqntrast with uniform phases, the coarsening rates de_perchOW that coarsening is driven by surface tension and a
significantly on the quench depth. Far away from the bifur-g,o.th |awtl2 is observed for various characteristic length

cation threshold of stripe formatioflarge quenches nu-  geajeq fike in model 43]. The results qualitatively change
merical solutions of the Swift-Hohenberg equation sh_ow thatat larger quenchesSec. IV): the characteristic length scales
€ksociated with dislocations and chevron boundaries start to
evolve differently, and the associated effective growth expo-
nents progressively decrease as the quench depth increases.
However, the effective exponent of the dislocation density
remains fairly constant for a relatively wide range of quench

*Electronic address: boyer@fisica.unam.mx depths. This feature can be explained by the fact that dislo-

We consider in the following an extension of the Swift-
ohenberg equation for oblique stripes in two spatial dimen-

in macroscopically disordered configuratiof&12. Based
on an analysis of the law of motion of a grain boundary
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cations have a much lower pinning potential than chevrorunstable when the control parametencreases and crosses
boundaries. We qualitatively justify this feature from weakly some threshold values” andr(”,

nonlinear analysis arguments. The dislocation exponent is )
close to the value of 1/3 in that intermediate range, in agree- MO — 7 < 2_ _K(c+m)
ment with the value measured in recent experimgts. ¢ c+2p-F ¢ c+2p- o
Some conclusions are presented in Sec. V. kg
@=—27— "+ (oblique rolls, 4)
Il. MODEL EQUATION c+2p—1f
Electroconvection in nematic liquid crystals is a paradigm rf:“) -0, {pg - k(z) qg =0} (normal rollg. (5)

of anisotropic pattern formatiof20]. If nematics is placed

between two glass plates properly treated, its director can bk the above relations, we have considered the case, the
aligned along a preferential direction, say thexis. When condition for which the instability at,=0 is to normal rolls
an external ac electric field is applied in the direction normal(p,=0). In the obliqgue phase, rolls make an anghe
to the plane, periodic rolls appear above a threshold. As the +arctar+ 7/ (c+ )] with they axis. As obvious from Eg.
voltage is increasedthe frequency being fixed in some (4), oblique rolls can only be observed fay>0. Hence,
proper rangg bifurcations to various phases can be ob-whenyis tuned from negative to positive values, a transition
served: “normal” rolls, with a wave vector directed along theform normal to oblique rolls can occur. In order to study the
x axis, usually appear first. This phase can be followed by &oarsening of oblique rolls, we will choose>0 and >0
transition to “oblique” rolls, of interest here, characterized byin the following.

a wave vector with two possible orientations with respect to Oblique rolls have the lowest threshold valué°)<0)
thex axis,f and 6. _ and we renote ,=r'" for simplicity. As already noted by

_ Although the theoretical ur_lde_rstandlng_ of eI_ectrpc_onvecPesch and Kramer, the structures that are likely to be ob-
tion patterns based on constitutive equations is still incoMygped forr in the rangdr,,0] may not be oblique rolls, but

plete, some nonlinear models that rely on equations for &,ore complicated, nonlinear structurésindulated” rollg
local order parameter and on symmetry arguments have begRat are not of interest here. When numerically solving Eq.

proposed. Some time ago, Pesch and Kramer introduced @R \yith random initial conditions and,<r <0, we actually
anisotropic mode[19] that exhibits a transition from normal 4 corved that oblique rolls never appeared. On the other

to oblique rolls: hand, configurations of oblique rolls very similar to those
o c 27 observed experimentalljl4,15 are always observed when

—=ry=A+ k%)zw— —4<9§,‘z,0+ —48)2(o’>zy1//— (1) settingr >0 instead. Normal rolls were never observed in the

It Ko Ko runs presented in the following sections. This is consistent

With dyy,=a/ax(y). In Eq. (1), ¢(X,t) is a local dimension- with thg weakly nonlinear analysis of E¢l) that predicts

less order parameter, interpreted as a small lateral elastffat oblique rolls have a lower free energy19]. Therefore,

displacementc and 7 are dimensionless constants modelingWe define the quench depth as

the loading forces and anisotropif_: b_ending constaiss e=r-rg, (6)

the wave number of the base periodic pattern, &rad“co-

herence” length that will be set to & for simplicity here. ~ with r¢ given by Eq.(4). We always choose larger than

The dimensionless parameteis chosen as the main control |r|(r>0).

parameter. Foc=#7=0 the above equation reduces to the

well known SWift-Hohenberg model of Rayleigh-Bénard I1l. COARSENING KINETICS NEAR ONSET (e<1)

convection(r is the reduced Rayleigh number in that gase

The model(1) derives from a Liapunov “free-energy” func-  We numerically solve Eq(l) by using a pseudospectral

tional. It can be recast as method and a time integration procedure whose descriptions
can be found in Ref[21]. The space is discretized on a
Iy _ ok (2) Square lattice of 1024nodes with a lattice sizAx set to
ot S unity. The base periody=27/k, of the pattern is fixed to

8Ax. The time integration scheme is stable for relatively

with large value of the time step, which is fixed to 0.5 in dimen-
1 sionless time units. The initial condition fa¥ is a random
F= Eé dF[kg(— rgf+ Yi2) + w(k§+A)21,/f— 277((9X(9y¢/f)2 field with Gaussian distribution, of zero mean and variance
\”6/3.
+c(a§¢)2], (3) Figure 1 displays in gray scale the order parametet

] ) o time t=1200 time units, for a run wite=12 and»=0.5(the
The functionalF monotonically decreases with imeéF/dt  angle of the rolls with the vertical axis is 11.31The

<0. - ) quench depth issmall and has been set te=1.9r
Linear stability analysis of Eq(1) around the state —(,0372. The configuration is that of a smectic polycrystal:

#(X,t)=0 shows that two modes of finite wave number Most of the defects present are grain boundaries separating

=pX+qgy (X and y are unitary vectopsbecome marginally zig and zag rolls, and few isolated dislocations can be ob-
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FIG. 1. Local order parameter in gray scatietail), c=12, »
=0.5, €=0.0372,t=1200, obtained from random initial conditions.

100000

FIG. 3. Defect density as a function of time. From bottom to
top. (+) symbols,c=12, »=0.56=11.319, e=1.9r=0.0372;( ")
symbols, c=6, 7=0.256=11.319, €=1.9r,=0.0184; (O) sym-
served. Due to the asymmetry of the problem, two kind OPOIS’C:& 7’:0'25(0:.15'50()' ezl.SﬂrC|:_0.(_)345. Average are per-

. e . e N formed over 13 runs in each case. Solid lines are guides to the eye.
boundaries can be roughly distinguished: “horizontal” chev-
ron boundaries where the roll orientation changes rather

smoothly from one grain to the other, and “verticadt in- horizontgl grain boundaries. In some cases, the two vert_ical
clined) boundaries, which are made of dense arrays of disloboundaries are not composed by the same number of dislo-
cations. This distinction is not very sharp, as one goes corations, therefor_e, some dislocations cannot annlhllate.wnh
tinuously from one situation to the other, corresponding toPthers of opposite Burgers vector when the bubble shrinks.
boundaries of “low” and “high” dislocation density, respec- However, this situation occurs rarely. _
tively. The defect field shown in Fig. 2 is obtained from Fig. We study the time evolution of the defect density de-
1 by using a Fourier filtering procedure. The dark areas corined as the fraction of area occupied by the black regions in
respond to defected regions. Dislocations tend to be distribEig. 2. We perform three series of runs at small quenches,
uted along stringlike structures, like in crystals. each satisfying:=1.9r for different choices of the param-

At very large times, grain boundaries are weakly curved€ters{c,»,r} (e=0.0372,0.0184,0.0345, respectivelfig-
and isolated dislocations lying inside a grain are relativelyure 3 shows a summary of the data obtained. In each case,

rare. These observations agree with recent electroconvectidf€e results are consistent with the law
experimentg15], where a mechanism for the formation of

isolated dislocations was identified: A shrinking bubble can

be roughly pictured as delimited by two vertical and two pa~ 72, (7)

which corresponds to a defect characteristic length scale
growing ast'2. This result seems to be fairly independent of
- —ee the angleé.
= We next investigate the time evolution of the Liapunov
functional F given by Eq.(3). If Fy denotes the value df
= " for a perfectly ordered system, then the quanify=F-F,
- __.:r. = represents the excess energy due to defects. The system free

energyF decreases like the total length of grain boundaries.
From Eq.(7), one should expect

F-Fo~t'2 (8

The numerical data plotted in Fig. 4 for small valuesafre
consistent with this scaling relation as well.

The time evolution of many coarsening systems is self-
FIG. 2. Defectgmarked in blackof a configuration with same ~ Similar: the large scale structure of successive configurations
parameters as in Fig. 1, at a larger scale.

is statistically time invariant, provided that spatial variables
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FIG. 4. Relative Liapunov free-energy per unit afdais the
system aregas a function of time. The legend is the same as in Fig.
3. Solid lines are guides to the eye.

are rescaled by a proper length. We thereby analyze the FIG. 5. Structure factorS(dky,t) at four different times:t
structure factor, defined as the Fourier transform of the tWo=5 1) 2 16(*),5 1(+),2 10(A). At each time, the curve

point correlation functionS(lz)=<4,l/(|z,t)a,[/(—|2,t)), the braces has been rescaled according to EtD), where&(t) is defined as
representing average over initial conditiof®k) is maxi- ~ S(9%=0.1). The parameters ae=6,7=0.25 e=1.9r|. (Averages

> . ) over 40 independent runs.
mum for any of thgfour) wave vectors, characterizing zig
and zag rolls. At any given time, we numerically observe that

S is maximal fork;~K, given by Eq.(4). Therefore, the (108 I TE 00 28 e Wit domin wall:
selected stripe periodicity and orientation in the polycrystal—these ?eaturesg were not investigatel d wi in-wals,
line structure are that of the marginal wave vectkysleter- — The ghove results are consistent with a coarsening process
mined from linear s_tab|I|ty_anaI)_/S|s. A similar situation IS driven by grain boundary surface tension and involving a
encountered for the isotropic Swift-Hohenberg model, and igjinge characteristic length scale, like for the dynamics of
thought to be more generally a property of potential systemg,qdel A for a nonconserved order parame@l The law
[7]. Near any peak; of S, we propose the following scaling R~t'2 is also expected to describe the kinetics of grain
ansatz: growth in solid polycrystal$22]. This situation differs mark-
B edly from isotropic stripegwhere R~tY3 [11-13). Note
S(Sky, 3k 1,1 = §(DEL (D1 Ik, €, (DK, ], © that the available experimental studies on anisotropic stripes

whereéizzlz—lzzz 6kHAkH+5kLkL: with Ak” and kl denoting the have Ire{oltl)srtedtlr/z]ut1:t11 ilower coarsening laws than (Eg),
unit vectors longitudinal and transverse to the wave vectoffamely.t-=or [14,13.

k., respectivelyf(x) is a scaling functiong(t) and&, (t) are

a priori two characteristic lengths describing grain growth in
the directions normal and parallel to the rolls, respectively.
Let us defineS(sk,t)=[~, ok, S(k,t), a symmetric rela-
tionship definingS,. From Eq.(9), one obtains the scaling
ansatz

100 T T

Si(dk;, 1) = & gL&(t) K] (10)

Figure 5 displaysS, as a function ofék; at various times
(t=5X10%,2x10%,5x 10%,5x 10%, for {c=6,7=0.25,¢
=1.9r}. The scaling relation10) holds over nearly two
decades, despite a slight widening at large times. The length
§(1), taken from the maximum value @, is plotted as a
function of time in Fig. 6. The results are in good agreement
with

é-H 10

1 L
100 1000 10000 100000

§(t) ~ t2, (12)
We have not found, (t), determined fron®, , to be a con- FIG. 6. Length determined from the maximal intensity of the

venient length scale to characterize coarseningis larger  structure factor. See Fig. 3 for legends. The solid line is a guide to
than ¢, by a factor varying between @t short timegand 2  the eye.
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FIG. 7. (a) Local order parameter in gray scales12, =0.5, t=500. The quench is “moderdtee=11r=0.215. The chevron
boundaries are now straight and pinn€éu). Dislocation field of(a) (same scaleobtained with the Fourier filtering procedure.

IV. COARSENING AT LARGER QUENCH DEPTHS separating domains of stripes have a willth-\ /e [27].
Therefore, close to the onset of the supercritical bifurcation
(e—0%), W becomes very large and the pinning potential
In solid crystals, for an isolated dislocation to glide from (13) can be neglected. On the other hand, as the quench
one row of atoms to the next one, there is a finite energy coslepth e increasesW decreases and pinning forces can be-
corresponding to the rows that have to be compressed @ome large enough to affect qualitatively defect dynamics.
dilated during the move. The resulting elastic force, the During a coarsening process driven by surface tension,
Peierls stress, tends to prevent the glide of dislocationthe average forcd in Eq. (12) is time dependentf ~ y«
[23,24. Therefore, dislocations tend to be pinned in posi-~ y/R(t), with y and « the typical interface surface tension
tions (periodically spacedof minimum energy, and motion and curvature, respectively. At short times, domains have
takes place only if an external stress larger than the criticadmall sizesR, and f is large compared witlp in Eq. (12).
Peierls stress is applied. Remarkably, the defects present Defects move easily and the average grain size grows. As a
systems that form periodic patterns are also subjected teesult, the driving forcd decreases with time. At some point,
similar pinning forces. Their origin is nonlinear in that case,f may eventually become lower than the typical valugoof
and is due to the apparition of “nonadiabatic” terms in(which is time independentin this case, boundaries become
weakly nonlinear expansions. Studies on the Swift-pinned at one of the discrete stable positigpsuch that

Hohenberg model have shown that the laws of motion ot0 in Eq.(12). This situation is easy to observe numerically
grain boundariegor dislocation arraysinvolve short range, ‘

A. Phenomenology of pinning forces in modulated phases

spatially periodic pinning forcegl2,25-27. Either in crys- Y
tals or in patterns, the law of motion of a defect takes the
general form

w v = ptdxidt=f - p cogk,x), (12)

where v is the defect velocityx its position (for a grain
boundary, the coordinate normal to the interfage a mo-

bility, f an external force per unit lengtte.g., the driving
force for coarsening and p the magnitude of the pinning
force, which oscillates with a periodicityr2 k, proportional

to the crystal(or base pattepnperiodicity \.. Peierls-like

pinning forces are usually much smaller than the other char-
acteristic elastic forceésuch as the critical threshold shear
stressf.,), and have the same general approximate expres-
sion, valid both for solidg23,24 and nonlinear patterns

[12,25: \

/fo ~ ex— aWI\], 13
Pier H ol (13 FIG. 8. Same parameters as in Fig. 7160 000(detail. The

whereW is the width of the defedisee further Fig. B anda  chevron boundaries and dislocations have a whithand Wy,
a constant of order unity. For instance, grain boundariesespectively.
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for large quenchegp large), where asymptotic patterns re-
main only partially ordered“glassy”), with many immobile
defectg[8,12]. On the other hand, in the reginae- 0, defect
pinning is negligible during the numerical time scales stud-
ied, and coarsening dynamics is more likely to be self- W0PAF/A
similar and characterized by well defined exponents. W0k gy,
For intermediate quenches, well before all grain bound-
aries of a system become pinned, the Peierls-like barriers are
believed to slow down the ordering kinetics. At intermediate

1000 F o

times, one may still be able to fit in some cases the numerical W}
results with power lawsR~t¥% . Z* now represents agffec-
tive grOWth exponent, and’ = Z‘ €0 10 n 1000 oo 100000
t
B. Pinning of anisotropic stripes FIG. 9. Relative free energy per unit area as a function of time

To check whether the arguments presented above apply {8 ¢=12. #=0.5 and various quench depths. From bottom to top:
anisotropic patterns as well, we have performed calculation§™0-037;0.098;0.294;0.607; 1.
for deeper quenches than in Sec. lll.

Figure {a) shows in gray scale the fielgl of a fraction of . d In pgis 1
the system, obtained for a “moderate” quench of depth Zdis =~ dint |10 (15)
=11r|=0.215, at time=500 with{c=12,%=0.5. The two -
classes of defects previously mentioned, the horizontal chevand similar relations foxz*F and zs)
ron grain boundaries and the dislocations, can now be clearly As expected from the discussion of Sec. IV A, the order-
distinguished[The dislocation field is shown in Fig.(B)].  ing kinetics slow down noticeably asis increased. All ex-
The chevron boundaries are fairly straight. They remairponentsz, z-, andzsincrease withe. Figure 11 displays the
practically immobile during the whole coarsening processyariations of the different effectlve exponents as a function
which is driven by dislocation motion only. This feature was of €. The dislocation exponeu;, differs noticeably frone,
observed in experiments as wgll4,15. A detail of a large  (andzy): z,> z- > z¢. The behavior otF is characterized by
time configuration(t=50 000 is shown in Fig. 8. Like for two reg|mes At moderate quench@ gradually departs
shallow quenches, dislocations tend to organize along stringrom z-=2 and slowly increases withup to a value close to
like structures that are generally curved. We interpret the8. For e=39r |, zF then increases more sharply, the signa-
immobility of the chevron boundary as caused by strong pinture of a sudden increase of pinning effects. A similar behav-
ning forces. Given two domains of zig and zag rolls, theior (aIthough less pronounceis observed forzS The behav-
stable positions of a chevron boundary are imposed by thr of zdls with the quench depth is more abrupt. The
phase of the local order parameter, which does not changeariations ofz, are quite important for small and large val-
across the boundary when one follows a given roll. On thaies ofe. The most striking feature is the presence of a fairly
other hand, dislocations are much more mobile, suggestingng plateau at intermediate quench(ﬂr |<e<35ry)
that their pinning potentiap is very low, and therefore Wherezdls remains practically CO”Stamms—?’ This result
strongly anisotropic with respect to the grain boundary ori-
entation. . -

In the following, we define the effective exponents asso-
ciated with dislocations, free-energy and structure factor, re-
spectively: e=31Jr|

0.1F e=51r.| = E

pas~ U1, AF~ TV 50 ~1V5 (14) ol
e=5lr.| ..
where pys is the dislocation density, and is determined the ;. oot g
same way agy in Sec. Il [the fraction of black area of Fig.
7(b)] [28]. The other quantities have been defined in Sec. Ill.
We have plotted the time evolution of the relative free-
energy per unit area\F in Fig. 9, for different quench
depths. Similar curves are obtained for the dislocation den-
sity pgis (Fig. 10), and the correlation length (not shown.
Provided thate<35|r |, the curves are still reasonably well ]
fitted by power laws during the first few decades considered 0 5 o0 oo o0
in the numerical calculations. At larger quenches, they rap- ¢
idly saturate a finite value indicating defect pinning. In these
cases, we define the effective expon@rbitrarily) as given FIG. 10. Dislocation density as a function of time. Same param-
at timet=1000, eter as in Fig. 9.

0.001
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be relatively insensitive to the value efin that range, as
observed numerically for|| < e<35|r| in Fig. 11. Further
increase ofe eventually produces dislocation pinning, and a
general slowing down of the system must occur: it is illus-
trated by the inflection of the effective exponents past 85
1 Let us assume next that the system is described by two
characteristic length scalds,;s andL, representing the lin-
ear extent of a grain along the and x directions, respec-
tively. Following the arguments of Reff15], the dislocation
density can be written aggis~ Lgis/ (Laiskd) =L:% In the
1 moderate quench regim(8|r < e<35r|), L.~t3. In this
regime, the results on the energy and the structure factor
(Fig. 11) suggest that the other length schlg, grows faster
thant'® (2<z <3). Therefore, as time goes, defected re-
gions tend to be more composed of dislocations than chevron
] boundaries(Lgis>L.). Unfortunately, this finding disagrees
55 with the experimental results on electroconvection, where
e/|re| the opposite behavior was found: a very slow growth law for
Lgis (~t15), as well as a similar law for a correlation length,
FIG. 11. Effective exponents for dislocations, energy, and strucwas reported in Ref15]. Hence, the experimental grains are
ture factor as a function of the reduced quench degth]. The  elongated along the direction at late staggR9].
parameters in Eql) arec=12, »=0.5.

V. CONCLUSIONS

agrees with the experimental results [d5], where a law We have presented evidence that the coarsening of smec-

13 was reported for the dislocation density. tic patterns, as given by a potential anisotropic Swift-
Hohenberg equation, is characterized by*alaw close to

onset. This law has not been observed experimentally so far
in electroconvection of nematic liquid crystals, and may cor-
We sketch a possible interpretation of part of the abovgespond to a regime difficult to reach. For larger quench
observations, based on the fact that pinning effects argepths, the phase ordering kinetics is affected by pinning
strongly anisotropic. We saw that, away from onset, chevrorfects that strongly depend on grain boundary orientations.
boundaries become totally pinned. Meanwhile, dislocationg particular regime is observed numerically for a fairly wide
are mobile and may still have a very low pinning potential.interval of moderate quenches: chevron boundaries get
From the standard relation for the width of a grain boundarypinned, and grain growth still takes place via mobile arrays
in stripe patterns, derived from weakly nonlinear analysisof dislocations. A similar behavior was observed in experi-
[27], let us assume that the width of chevron boundai®s  ments[14,15. In this regime, the dislocation density behaves
and that of a roughly vertical dislocation arrédis, see Fig.  ast /3 the same decay rate as found experimentglfy].
8) are given bW 4is= . gish/ V€, With &; and dyis two con-  QOur results suggest that the characteristic length of a dislo-
stants of order unity. From observations, let us assume thafation array grows faster than that of a chevron boundary.
dislocations have a larger width than chevroW;s>W,,  This feature disagrees with the experimental findings,
i.€., Ogis™> 6. though, and may point out a limitation of the present model.
From the general relatiof13), the pinning potentials have Nonpotential effects, which have been neglected here, prob-
a nonanalytical behavior at low; and saturate at large(p ably play an important role in this system.
~exgd-cstie]). If 845> 6., the pinning potentialp, and

C. Discussion

Pgis for chevrons and dislocations, respectively, are such that ACKNOWLEDGMENTS
Pais<<pP.<1 if e<1. A moderate increase @f can cause a
rapid increase op, up to its saturation value, whilgys may We thank M. Dennin and C. Kamaga for fruitful discus-

still remain very low. This situation can happen in the rangesions and for communicating to us unpublished experimental
of quench depths defined gd,)?< e<(adyy)? [ais intro-  results. This work was supported by the Consejo Nacional de
duced in Eq.(13)], provided that this range is sufficiently Ciencia y Tecnologia(CONACYT, Mexico Grant No.
broad. Hence, one would expect the coarsening dynamics #0867-F.
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