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We study the coarsening of two-dimensional smectic polycrystals characterized by grains of oblique stripes
with only two possible orientations. For this purpose, an anisotropic Swift-Hohenberg equation is solved. For
quenches close enough to the onset of stripe formation, the average domain size increases with time ast1/2.
Further from onset, anisotropic pinning forces similar to Peierls stresses in solid crystals slow down defects,
and growth becomes anisotropic. In a wide range of quench depths, dislocation arrays remain mobile and
dislocation density roughly decays ast−1/3, while chevron boundaries are totally pinned. We discuss some
agreements and disagreements found with recent experimental results on the coarsening of anisotropic elec-
troconvection patterns.
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I. INTRODUCTION

Coarsening occurs when a system is rapidly quenched be-
low a transition point into a phase with broken symmetries.
The spatiotemporal evolution following a quench is rela-
tively well known when the broken symmetry phase is char-
acterized by a local order parameter that is spatially uniform
(e.g., the local magnetization of a ferromagnetic phase[1,2]).
The growth of spatial correlations, driven by domain growth
or the annihilation of topological defects, usually obeys a
dynamical scaling relation and the correlation length, or “do-
main size” R, grows as a power law of time with a well
defined exponent. Classification schemes have been estab-
lished for the main different cases[2,3].

The situation is much less understood for phases charac-
terized by a local order parameter that is spatially modulated.
Systems forming periodic patterns(stripes, hexagons) with a
well defined periodicity can be observed in numerous physi-
cal systems, such as Rayleigh-Bénard convection, diblock-
copolymer melts, magnetic materials, or Turing reaction-
diffusion systems[4]. After a quench into a stripe phase,
two-dimensional configurations are composed of many do-
mains differently oriented, including grain boundaries, dislo-
cations, and disclinations. Numerical[5–13] as well as ex-
perimental [14–17] studies have established that it is
difficult, if not impossible, to reduce the ordering dynamics
of stripes to one of the class known for uniform phases.
There is still some debate regarding the growth mechanisms,
the value of the growth exponent, whether dynamical scaling
holds or not, or whether the system may involve various
characteristic length scales growing with different exponents.
In contrast with uniform phases, the coarsening rates depend
significantly on the quench depth. Far away from the bifur-
cation threshold of stripe formation(large quenches), nu-
merical solutions of the Swift-Hohenberg equation show that
coarsening stops at large time, i.e., the system remain frozen
in macroscopically disordered configurations[8,12]. Based
on an analysis of the law of motion of a grain boundary

through curved stripes, it was recently proposed that a single
growth exponent could be introduced, but for vanishingly
small quenches only[11,12]. From dimensional arguments, a
R, t1/3 growth law was derived in that regime, in good
agreement with numerical results at small quenches[11–13].
The freezing observed at finite quenches was attributed to the
presence of a periodic pinning potential(generated by the
pattern itself) acting on grain boundaries.

In the present paper, we consider a closely related prob-
lem where similar questions remain open, and that has not
been investigated numerically so far: the coarsening ofan-
isotropicstripe patterns. Oblique rolls making only two pos-
sible angles(u or −u, fixed) with respect to a particular axis
can be observed in electroconvection of nematic liquid crys-
tals [4]. Studying the ordering dynamics on this system is
motivated by various reasons. First, one can intend a com-
parison with available experimental data, since coarsening
experiments have been recently conducted in electroconvec-
tion [14,15]. Second, the polycrystalline structures of oblique
stripes have a relatively simpler geometry than those of iso-
tropic stripes: the constraint of the fixed angle prevents the
formation of disclinations. Therefore, the topological defects
are essentially dislocations and(chevron) grain boundaries
separating domains differently oriented. This situation can be
seen as a smectic analog of the structures formed by grains in
polycrystalline solids, where disclinations are also absent
[18].

We consider in the following an extension of the Swift-
Hohenberg equation for oblique stripes in two spatial dimen-
sions. This model, proposed by Pesch and Kramer for de-
scribing electroconvection[19], is recalled in Sec. II. In Sec.
III, we investigatesmall quenches: the numerical results
show that coarsening is driven by surface tension and a
growth law t1/2 is observed for various characteristic length
scales, like in model A[3]. The results qualitatively change
at larger quenches(Sec. IV): the characteristic length scales
associated with dislocations and chevron boundaries start to
evolve differently, and the associated effective growth expo-
nents progressively decrease as the quench depth increases.
However, the effective exponent of the dislocation density
remains fairly constant for a relatively wide range of quench
depths. This feature can be explained by the fact that dislo-*Electronic address: boyer@fisica.unam.mx
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cations have a much lower pinning potential than chevron
boundaries. We qualitatively justify this feature from weakly
nonlinear analysis arguments. The dislocation exponent is
close to the value of 1/3 in that intermediate range, in agree-
ment with the value measured in recent experiments[15].
Some conclusions are presented in Sec. V.

II. MODEL EQUATION

Electroconvection in nematic liquid crystals is a paradigm
of anisotropic pattern formation[20]. If nematics is placed
between two glass plates properly treated, its director can be
aligned along a preferential direction, say thex axis. When
an external ac electric field is applied in the direction normal
to the plane, periodic rolls appear above a threshold. As the
voltage is increased(the frequency being fixed in some
proper range), bifurcations to various phases can be ob-
served: “normal” rolls, with a wave vector directed along the
x axis, usually appear first. This phase can be followed by a
transition to “oblique” rolls, of interest here, characterized by
a wave vector with two possible orientations with respect to
the x axis, u and −u.

Although the theoretical understanding of electroconvec-
tion patterns based on constitutive equations is still incom-
plete, some nonlinear models that rely on equations for a
local order parameter and on symmetry arguments have been
proposed. Some time ago, Pesch and Kramer introduced an
anisotropic model[19] that exhibits a transition from normal
to oblique rolls:
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] t
= rc − z4sD + k0

2d2c −
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k0
4]y

4c +
2h
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4 ]x
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2c − c3 s1d

with ]xsyd=] /]xsyd. In Eq. (1), csxW ,td is a local dimension-
less order parameter, interpreted as a small lateral elastic
displacement;c andh are dimensionless constants modeling
the loading forces and anisotropic bending constants;k0 is
the wave number of the base periodic pattern, andz a “co-
herence” length that will be set to 1/k0 for simplicity here.
The dimensionless parameterr is chosen as the main control
parameter. Forc=h=0 the above equation reduces to the
well known Swift-Hohenberg model of Rayleigh-Bénard
convection(r is the reduced Rayleigh number in that case).
The model(1) derives from a Liapunov “free-energy” func-
tional. It can be recast as
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The functionalF monotonically decreases with time,dF/dt
ø0.

Linear stability analysis of Eq.(1) around the state

csxW ,td=0 shows that two modes of finite wave numberkW

=px̂+qŷ (x̂ and ŷ are unitary vectors) become marginally

unstable when the control parameterr increases and crosses
some threshold valuesrc

sod and rc
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In the above relations, we have considered the casec.0, the
condition for which the instability atrc=0 is to normal rolls
spc=0d. In the oblique phase, rolls make an angleu
= ±arctanfÎh / sc+hdg with the y axis. As obvious from Eq.
(4), oblique rolls can only be observed forh.0. Hence,
whenh is tuned from negative to positive values, a transition
form normal to oblique rolls can occur. In order to study the
coarsening of oblique rolls, we will choosec.0 andh.0
in the following.

Oblique rolls have the lowest threshold valuesrc
sod,0d

and we renoterc; rc
sod for simplicity. As already noted by

Pesch and Kramer, the structures that are likely to be ob-
served forr in the rangefrc,0g may not be oblique rolls, but
more complicated, nonlinear structures(“undulated” rolls)
that are not of interest here. When numerically solving Eq.
(1) with random initial conditions andrcø r ø0, we actually
observed that oblique rolls never appeared. On the other
hand, configurations of oblique rolls very similar to those
observed experimentally[14,15] are always observed when
settingr .0 instead. Normal rolls were never observed in the
runs presented in the following sections. This is consistent
with the weakly nonlinear analysis of Eq.(1) that predicts
that oblique rolls have a lower free energyF [19]. Therefore,
we define the quench depth as

e = r − rc, s6d

with rc given by Eq.(4). We always choosee larger than
urcusr .0d.

III. COARSENING KINETICS NEAR ONSET „e™1…

We numerically solve Eq.(1) by using a pseudospectral
method and a time integration procedure whose descriptions
can be found in Ref.[21]. The space is discretized on a
square lattice of 10242 nodes with a lattice sizeDx set to
unity. The base periodl0;2p /k0 of the pattern is fixed to
8Dx. The time integration scheme is stable for relatively
large value of the time step, which is fixed to 0.5 in dimen-
sionless time units. The initial condition forc is a random
field with Gaussian distribution, of zero mean and variance
Îe /3.

Figure 1 displays in gray scale the order parameterc at
time t=1200 time units, for a run withc=12 andh=0.5 (the
angle of the rolls with the vertical axis is 11.31°). The
quench depth issmall, and has been set toe=1.9urcu
.0.0372. The configuration is that of a smectic polycrystal:
Most of the defects present are grain boundaries separating
zig and zag rolls, and few isolated dislocations can be ob-
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served. Due to the asymmetry of the problem, two kind of
boundaries can be roughly distinguished: “horizontal” chev-
ron boundaries where the roll orientation changes rather
smoothly from one grain to the other, and “vertical”(or in-
clined) boundaries, which are made of dense arrays of dislo-
cations. This distinction is not very sharp, as one goes con-
tinuously from one situation to the other, corresponding to
boundaries of “low” and “high” dislocation density, respec-
tively. The defect field shown in Fig. 2 is obtained from Fig.
1 by using a Fourier filtering procedure. The dark areas cor-
respond to defected regions. Dislocations tend to be distrib-
uted along stringlike structures, like in crystals.

At very large times, grain boundaries are weakly curved
and isolated dislocations lying inside a grain are relatively
rare. These observations agree with recent electroconvection
experiments[15], where a mechanism for the formation of
isolated dislocations was identified: A shrinking bubble can
be roughly pictured as delimited by two vertical and two

horizontal grain boundaries. In some cases, the two vertical
boundaries are not composed by the same number of dislo-
cations, therefore, some dislocations cannot annihilate with
others of opposite Burgers vector when the bubble shrinks.
However, this situation occurs rarely.

We study the time evolution of the defect densityrd, de-
fined as the fraction of area occupied by the black regions in
Fig. 2. We perform three series of runs at small quenches,
each satisfyinge=1.9urcu for different choices of the param-
etershc,h ,rj (e=0.0372,0.0184,0.0345, respectively). Fig-
ure 3 shows a summary of the data obtained. In each case,
the results are consistent with the law

rd , t−1/2, s7d

which corresponds to a defect characteristic length scale
growing ast1/2. This result seems to be fairly independent of
the angleu.

We next investigate the time evolution of the Liapunov
functionalF given by Eq.(3). If F0 denotes the value ofF
for a perfectly ordered system, then the quantityDF=F−F0
represents the excess energy due to defects. The system free
energyF decreases like the total length of grain boundaries.
From Eq.(7), one should expect

F − F0 , t−1/2. s8d

The numerical data plotted in Fig. 4 for small values ofe are
consistent with this scaling relation as well.

The time evolution of many coarsening systems is self-
similar: the large scale structure of successive configurations
is statistically time invariant, provided that spatial variables

FIG. 1. Local order parameter in gray scale(detail), c=12, h
=0.5, e=0.0372,t=1200, obtained from random initial conditions.

FIG. 2. Defects(marked in black) of a configuration with same
parameters as in Fig. 1, at a larger scale.

FIG. 3. Defect density as a function of time. From bottom to
top. s+d symbols,c=12,h=0.5su=11.31°d, e=1.9urcu=0.0372;sLd
symbols, c=6, h=0.25su=11.31°d, e=1.9urcu=0.0184; ssd sym-
bols,c=3, h=0.25su=15.50°d, e=1.9urcu=0.0345. Average are per-
formed over 13 runs in each case. Solid lines are guides to the eye.
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are rescaled by a proper length. We thereby analyze the
structure factor, defined as the Fourier transform of the two-

point correlation function,SskWd=kcskW ,tdcs−kW ,tdl, the braces

representing average over initial conditions.SskWd is maxi-

mum for any of the(four) wave vectorskWZ characterizing zig
and zag rolls. At any given time, we numerically observe that

S is maximal for kWZ<kWc, given by Eq.(4). Therefore, the
selected stripe periodicity and orientation in the polycrystal-

line structure are that of the marginal wave vectorskWc deter-
mined from linear stability analysis. A similar situation is
encountered for the isotropic Swift-Hohenberg model, and is
thought to be more generally a property of potential systems

[7]. Near any peakkWZ of S, we propose the following scaling
ansatz:

Ssdki,dk',td = jistdj'stdffjistddki,j'stddk'g, s9d

wheredkW =kW −kWZ=dkik̂i+dk'k̂', with k̂i and k̂' denoting the
unit vectors longitudinal and transverse to the wave vector

kWZ, respectively.fsxd is a scaling function,jistd andj'std are
a priori two characteristic lengths describing grain growth in
the directions normal and parallel to the rolls, respectively.

Let us defineSisdki ,td;e−`
` dk'SsdkW ,td, a symmetric rela-

tionship definingS'. From Eq.(9), one obtains the scaling
ansatz

Sisdki,td = jistdgfjistddkig. s10d

Figure 5 displaysSi as a function ofdki at various times
st=53102,23103,53103,53104d, for hc=6,h=0.25,e
=1.9urcuj. The scaling relation(10) holds over nearly two
decades, despite a slight widening at large times. The length
jistd, taken from the maximum value ofSi is plotted as a
function of time in Fig. 6. The results are in good agreement
with

jistd , t1/2. s11d

We have not foundj'std, determined fromS', to be a con-
venient length scale to characterize coarsening.j' is larger
thanji by a factor varying between 5(at short times) and 2

(at large times). This could be due to some phase correlations
of longer range than those associated with domain walls;
these features were not investigated.

The above results are consistent with a coarsening process
driven by grain boundary surface tension and involving a
single characteristic length scale, like for the dynamics of
model A for a nonconserved order parameter[3]. The law
R, t1/2 is also expected to describe the kinetics of grain
growth in solid polycrystals[22]. This situation differs mark-
edly from isotropic stripes(where R, t1/3 [11–13]). Note
that the available experimental studies on anisotropic stripes
have reported much slower coarsening laws than Eq.(11),
namely,t1/5 or t1/4 [14,15].

FIG. 6. Length determined from the maximal intensity of the
structure factor. See Fig. 3 for legends. The solid line is a guide to
the eye.

FIG. 4. Relative Liapunov free-energy per unit area(A is the
system area) as a function of time. The legend is the same as in Fig.
3. Solid lines are guides to the eye.

FIG. 5. Structure factorSisdki ,td at four different times:t
=5 102sLd ,2 103s* d ,5 103s+d ,2 104sDd. At each time, the curve
has been rescaled according to Eq.(10), wherejistd is defined as
Ssdki=0,td. The parameters arec=6,h=0.25,e=1.9urcu. (Averages
over 40 independent runs.)
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IV. COARSENING AT LARGER QUENCH DEPTHS

A. Phenomenology of pinning forces in modulated phases

In solid crystals, for an isolated dislocation to glide from
one row of atoms to the next one, there is a finite energy cost
corresponding to the rows that have to be compressed or
dilated during the move. The resulting elastic force, the
Peierls stress, tends to prevent the glide of dislocations
[23,24]. Therefore, dislocations tend to be pinned in posi-
tions (periodically spaced) of minimum energy, and motion
takes place only if an external stress larger than the critical
Peierls stress is applied. Remarkably, the defects present in
systems that form periodic patterns are also subjected to
similar pinning forces. Their origin is nonlinear in that case,
and is due to the apparition of “nonadiabatic” terms in
weakly nonlinear expansions. Studies on the Swift-
Hohenberg model have shown that the laws of motion of
grain boundaries(or dislocation arrays) involve short range,
spatially periodic pinning forces[12,25–27]. Either in crys-
tals or in patterns, the law of motion of a defect takes the
general form

m−1v = m−1dx/dt = f − p cosskpxd, s12d

where v is the defect velocity,x its position (for a grain
boundary, the coordinate normal to the interface), m a mo-
bility, f an external force per unit length(e.g., the driving
force for coarsening), and p the magnitude of the pinning
force, which oscillates with a periodicity 2p /kp proportional
to the crystal(or base pattern) periodicity lc. Peierls-like
pinning forces are usually much smaller than the other char-
acteristic elastic forces(such as the critical threshold shear
stressfcr), and have the same general approximate expres-
sion, valid both for solids[23,24] and nonlinear patterns
[12,25]:

p/fcr , expf− aW/lcg, s13d

whereW is the width of the defect(see further Fig. 8), anda
a constant of order unity. For instance, grain boundaries

separating domains of stripes have a widthW,lc/Îe [27].
Therefore, close to the onset of the supercritical bifurcation
se→0+d, W becomes very large and the pinning potential
(13) can be neglected. On the other hand, as the quench
depthe increases,W decreases and pinning forces can be-
come large enough to affect qualitatively defect dynamics.

During a coarsening process driven by surface tension,
the average forcef in Eq. (12) is time dependent:f ,gk
,g /Rstd, with g andk the typical interface surface tension
and curvature, respectively. At short times, domains have
small sizesR, and f is large compared withp in Eq. (12).
Defects move easily and the average grain size grows. As a
result, the driving forcef decreases with time. At some point,
f may eventually become lower than the typical value ofp
(which is time independent). In this case, boundaries become
pinned at one of the discrete stable positionsxp such thatv
=0 in Eq.(12). This situation is easy to observe numerically

FIG. 7. (a) Local order parameter in gray scale,c=12, h=0.5, t=500. The quench is “moderate9: e=11urcu=0.215. The chevron
boundaries are now straight and pinned.(b) Dislocation field of(a) (same scale) obtained with the Fourier filtering procedure.

FIG. 8. Same parameters as in Fig. 7, att=50 000(detail). The
chevron boundaries and dislocations have a widthWc and Wdis,
respectively.
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for large quenches(p large), where asymptotic patterns re-
main only partially ordered(“glassy”), with many immobile
defects[8,12]. On the other hand, in the regimee→0, defect
pinning is negligible during the numerical time scales stud-
ied, and coarsening dynamics is more likely to be self-
similar and characterized by well defined exponents.

For intermediate quenches, well before all grain bound-
aries of a system become pinned, the Peierls-like barriers are
believed to slow down the ordering kinetics. At intermediate
times, one may still be able to fit in some cases the numerical
results with power laws,R, t1/z*

. z* now represents aneffec-
tive growth exponent, anduz* ùzue→0.

B. Pinning of anisotropic stripes

To check whether the arguments presented above apply to
anisotropic patterns as well, we have performed calculations
for deeper quenches than in Sec. III.

Figure 7(a) shows in gray scale the fieldc of a fraction of
the system, obtained for a “moderate” quench of depthe
=11urcu=0.215, at timet=500 with hc=12,h=0.5j. The two
classes of defects previously mentioned, the horizontal chev-
ron grain boundaries and the dislocations, can now be clearly
distinguished.[The dislocation field is shown in Fig. 7(b)].
The chevron boundaries are fairly straight. They remain
practically immobile during the whole coarsening process,
which is driven by dislocation motion only. This feature was
observed in experiments as well[14,15]. A detail of a large
time configurationst=50 000d is shown in Fig. 8. Like for
shallow quenches, dislocations tend to organize along string-
like structures that are generally curved. We interpret the
immobility of the chevron boundary as caused by strong pin-
ning forces. Given two domains of zig and zag rolls, the
stable positions of a chevron boundary are imposed by the
phase of the local order parameter, which does not change
across the boundary when one follows a given roll. On the
other hand, dislocations are much more mobile, suggesting
that their pinning potentialp is very low, and therefore
strongly anisotropic with respect to the grain boundary ori-
entation.

In the following, we define the effective exponents asso-
ciated with dislocations, free-energy and structure factor, re-
spectively:

rdis , t−1/zdis
*

, DF , t−1/zF
*
, jistd , t1/zS

*
, s14d

whererdis is the dislocation density, and is determined the
same way asrd in Sec. III [the fraction of black area of Fig.
7(b)] [28]. The other quantities have been defined in Sec. III.

We have plotted the time evolution of the relative free-
energy per unit areaDF in Fig. 9, for different quench
depths. Similar curves are obtained for the dislocation den-
sity rdis (Fig. 10), and the correlation lengthj (not shown).
Provided thateø35urcu, the curves are still reasonably well
fitted by power laws during the first few decades considered
in the numerical calculations. At larger quenches, they rap-
idly saturate a finite value indicating defect pinning. In these
cases, we define the effective exponent(arbitrarily) as given
at time t=1000,

zdis
* = − SUd ln rdis

d ln t
U

t=1000
D−1

s15d

(and similar relations forzF
* andzS

*).
As expected from the discussion of Sec. IV A, the order-

ing kinetics slow down noticeably ase is increased. All ex-
ponentszdis

* , zF
* , andzS

* increase withe. Figure 11 displays the
variations of the different effective exponents as a function
of e. The dislocation exponentzdis

* differs noticeably fromzF
*

(andzS
*): zdis

* .zF
* .zS

* . The behavior ofzF
* is characterized by

two regimes: At moderate quenches,zF
* gradually departs

from zF
* =2 and slowly increases withe up to a value close to

3. For eù35urcu, zF
* then increases more sharply, the signa-

ture of a sudden increase of pinning effects. A similar behav-
ior (although less pronounced) is observed forzS

* . The behav-
ior of zdis

* with the quench depth is more abrupt. The
variations ofzdis

* are quite important for small and large val-
ues ofe. The most striking feature is the presence of a fairly
long plateau at intermediate quenchess5urcu,e,35urcud
wherezdis

* remains practically constant,zdis
* .3. This result

FIG. 9. Relative free energy per unit area as a function of time
for c=12, h=0.5 and various quench depths. From bottom to top:
e=0.037;0.098;0.294;0.607;1.

FIG. 10. Dislocation density as a function of time. Same param-
eter as in Fig. 9.
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agrees with the experimental results of[15], where a law
t−1/3 was reported for the dislocation density.

C. Discussion

We sketch a possible interpretation of part of the above
observations, based on the fact that pinning effects are
strongly anisotropic. We saw that, away from onset, chevron
boundaries become totally pinned. Meanwhile, dislocations
are mobile and may still have a very low pinning potential.
From the standard relation for the width of a grain boundary
in stripe patterns, derived from weakly nonlinear analysis
[27], let us assume that the width of chevron boundariessWcd
and that of a roughly vertical dislocation array(Wdis, see Fig.
8) are given byWc,dis=dc,disl /Îe, with dc andddis two con-
stants of order unity. From observations, let us assume that
dislocations have a larger width than chevrons:Wdis.Wc,
i.e., ddis.dc.

From the general relation(13), the pinning potentials have
a nonanalytical behavior at lowe, and saturate at largee sp
,expf−cst/Îegd. If ddis.dc, the pinning potentialspc and
pdis for chevrons and dislocations, respectively, are such that
pdis!pc!1 if e!1. A moderate increase ofe can cause a
rapid increase ofpc up to its saturation value, whilepdis may
still remain very low. This situation can happen in the range
of quench depths defined bysadcd2,e, saddisd2 [a is intro-
duced in Eq.(13)], provided that this range is sufficiently
broad. Hence, one would expect the coarsening dynamics to

be relatively insensitive to the value ofe in that range, as
observed numerically for 5urcu,e,35urcu in Fig. 11. Further
increase ofe eventually produces dislocation pinning, and a
general slowing down of the system must occur: it is illus-
trated by the inflection of the effective exponents past 35urcu.

Let us assume next that the system is described by two
characteristic length scales,Ldis andLc, representing the lin-
ear extent of a grain along they and x directions, respec-
tively. Following the arguments of Ref.[15], the dislocation
density can be written asrdis,Ldis/ sLdisLcd=Lc

−1. In the
moderate quench regimes5urcu,e,35urcud, Lc, t1/3. In this
regime, the results on the energy and the structure factor
(Fig. 11) suggest that the other length scaleLdis grows faster
than t1/3 s2øz* ø3d. Therefore, as time goes, defected re-
gions tend to be more composed of dislocations than chevron
boundariessLdis.Lcd. Unfortunately, this finding disagrees
with the experimental results on electroconvection, where
the opposite behavior was found: a very slow growth law for
Ldis s,t1/5d, as well as a similar law for a correlation length,
was reported in Ref.[15]. Hence, the experimental grains are
elongated along thex direction at late stages[29].

V. CONCLUSIONS

We have presented evidence that the coarsening of smec-
tic patterns, as given by a potential anisotropic Swift-
Hohenberg equation, is characterized by at1/2 law close to
onset. This law has not been observed experimentally so far
in electroconvection of nematic liquid crystals, and may cor-
respond to a regime difficult to reach. For larger quench
depths, the phase ordering kinetics is affected by pinning
effects that strongly depend on grain boundary orientations.
A particular regime is observed numerically for a fairly wide
interval of moderate quenches: chevron boundaries get
pinned, and grain growth still takes place via mobile arrays
of dislocations. A similar behavior was observed in experi-
ments[14,15]. In this regime, the dislocation density behaves
as t−1/3, the same decay rate as found experimentally[15].
Our results suggest that the characteristic length of a dislo-
cation array grows faster than that of a chevron boundary.
This feature disagrees with the experimental findings,
though, and may point out a limitation of the present model.
Nonpotential effects, which have been neglected here, prob-
ably play an important role in this system.
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FIG. 11. Effective exponents for dislocations, energy, and struc-
ture factor as a function of the reduced quench depthe / urcu. The
parameters in Eq.(1) arec=12, h=0.5.
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